- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Elimelech, K (1)
-
Kavraki, LE (1)
-
Vardi, MY. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
Asfour, T (1)
-
Billard, A (1)
-
Khatib, O. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Billard, A; Asfour, T; Khatib, O. (Ed.)Task planning is the problem of finding a discrete sequence of actions to achieve a goal. Unfortunately, task planning in robotic domains is computationally challenging. To address this, in our prior work, we explained how knowledge from a successful task solution can be cached for later use, as an “abstract skill.” Such a skill is represented as a trace of states (“road map”) in an abstract space and can be matched with new tasks on-demand. This paper explains how one can use a library of abstract skills, derived from past planning experience, to reduce the computational cost of solving new task planning problems. As we explain, matching a skill to a task allows us to decompose it into independent sub-tasks, which can be quickly solved in parallel. This can be done automatically and dynamically during planning. We begin by formulating this problem of “planning with skills” as a constraint satisfaction problem. We then provide a hierarchical solution algorithm, which integrates with any standard task planner. Finally, we experimentally demonstrate the computational benefits of the approach for reach-avoid tasks.more » « less
An official website of the United States government

Full Text Available